if the triangle abc shown, dc=20, ab=21, de=12, and ab is parallel to de. what is the value of ac

avatar

ane. Segment line Advertizing bisects Angle BAC. If BD=DA-AC, what is Angle C in degrees?

2. In the diagram below, I is the incenter of Triangle ABC. We know that AB=14, BC=11, and CA=15. What is CE?

3. In the diagram below,  I is the incenter of Triangle ABC. The segment line DE goes through I and is parallel to line AC. If AE=4 and CD-three, what is DE?

4. Every bit shown in the diagram Angle BAC=xc degrees. Let X be the foot of the altitude from A to line BC, line AY exist the bisector of Bending BAC, and line AZ be a median of Triangle ABC. If Angle XAY=13 degrees and X is on line By, then what is the mensurate of bending ZAC in degrees?

v.  I is the incenter of Triangle ABC as shown below. Nosotros accept CE=xv,AE=9 , and AB=12. Observe BF.

6.  I is the incenter of  Triangle XYZ. A circle centered at I intersects the three sides of Triangle XYZ at the six points A,B C,D E,and F as shown below. We know that YZ=4, ZX=5, and XY=6=AB+CD+EF. Find XA.

 #one
avatar +121433

1. Segment line AD bisects Angle BAC. If BD=DA-AC, what is Angle C in degrees?

I think you must mean that  BD = DA = AC

[ DA - Ac   couldn't be as long as BD ]

Since BD = Advertisement, then angles BAD and  ABD are equal

And angle CAD = bending BAD

And since DA = AC, then angle  ACD = bending ADC

Let the measures of angles ABD, BAD, CAD = ten

And permit  the measures of angles ACD and ADC = y

And so we have that

ten + ten + x + y = 180   ⇒    3x + y = 180   ⇒ y = 180 -3x       (1)

x + y + y = 180  ⇒    x + 2y = 180        (2)

Sub (one) into (2)

x + 2(180 - 3x) = 180

ten + 360 - 6x   = 180

-5x =   - 180

x = 36°

And angle ACD = angle C =   180 - 3(36) = 180 - 108   = 72°

coolcoolcool

 #2
avatar +121433

2. In the diagram below, I is the incenter of Triangle ABC. Nosotros know that AB=xiv, BC=11, and CA=fifteen. What is CE?

Describe CI, AI and BI

Considering of AAS......

Triangles EIC and DIC are congruent   and

Triangles Environmental impact assessment and FIA are congruent    and

Triangles DIB and FIB are congruent

Then

EC = DC =  ten     and

EA = FA = y       and

BD = BF = z

So we have this system of equations

10 + y = fifteen   ⇒ y = fifteen - x    (i)

y + z = 14       (2)

x + z =  xi ⇒ z = 11 - x     (3)

Sub  (1) and (3) into (2)

fifteen - ten + 11 - ten   = fourteen       simplify

26 - 2x =  14

-2x = - 12

x = 6   =  CE

coolcoolcool

 #3
avatar +121433

5.  I is the incenter of Triangle ABC as shown below. We accept CE=xv,AE=nine , and AB=12. Find BF.

Because Be is an angle bisector....we have the post-obit relationship

BC / AB = CE /AE

BC / 12 = 15 / ix

BC /12 =  5/iii

BC =  12 * v / 3   = 20

And because FC is an angle bisector, we have this relationship

BC /AC = BF /AF

xx / 24 = BF / AF

5 / six  = BF / AF

So.....Air conditioning is divided into 11 equal parts......and BF is v of these

And so  BF is  (5/eleven) of  AC =   (5/11) * 12    = 60 / eleven

coolcoolcool

 #4
avatar +121433

iii. In the diagram below,  I is the incenter of Triangle ABC. The segment line DE goes through I and is parallel to line Air conditioning. If AE=4 and CD-3, what is DE?

Because IC is a transversal cutting parallel lines, then angles ICA and DIC are equal alternating angles......but angles ICA  and ICD   are equal because IC is an angle bisector

Therefore, angles DIC and ICD are equal

But.......in triangle DIC,  the sides reverse these angles are also equal

So ....CD = ID = 3

Similarly, we can show that AE = IE = 4

And then DE = DI + EI    = 3 + 4    =  7

coolcoolcool

 #5
avatar +26236

4.

Every bit shown in the diagram Angle BAC=90 degrees.

Permit X exist the pes of the distance from A to line BC,

line AY be the bisector of Angle BAC,

and line AZ be a median of Triangle ABC.

If Angle XAY=thirteen degrees and Ten is on line BY,

then what is the measure of bending ZAC in degrees?

\(\text{Allow $BZ=CZ=AZ=r$} \\ \text{Let $ZAC=x$} \\ \text{Let $ZAC=ACZ=x$}\)

\(\begin{array}{|rcll|} \hline ABC &=& 90^{\circ}-ACZ\\ &=& 90^{\circ}-10 \\\\ BAX &=& ninety^{\circ}-(90^{\circ}-x) \\ &=& 10 \\ \hline \cease{array}\)

\(\text{Let $BAY=YAC$} \)

\(\brainstorm{array}{|rcll|} \hline BAY &=& x+13^{\circ} \\ BAY=YAC &=& x+thirteen^{\circ} \\ \mathbf{YAZ} & \mathbf{=} & \mathbf{13^{\circ} } \\ \hline \cease{array} \)

\(\brainstorm{array}{|rcll|} \hline AYX &=& 90^{\circ} - xiii^{\circ} \\ &=& 77^{\circ} \\\\ CYA &=& 180^{\circ} - AYX \\ &=& 180^{\circ} - 77^{\circ} \\ &=& 103^{\circ} \\ \hline \cease{array}\)

\(\text{Let $AZY=2x$} \)

\(\begin{assortment}{|rcll|} \hline AZY+CYA+YAZ &=& 180^{\circ} \\ 2x+103^{\circ} +xiii^{\circ} &=& 180^{\circ} \\ 2x &=& 180^{\circ} -103^{\circ} -13^{\circ} \\ 2x &=& 64^{\circ} \\ \mathbf{x} &\mathbf{=}& \mathbf{32^{\circ}} \\ \hline \end{array}\)

The measure of angle ZAC in degrees is \(\mathbf{32^{\circ}}\)

laugh

 #6
avatar +121433

Very well washed, Heureka.....!!!

coolcoolcool

 #seven
avatar +121433

6.  I is the incenter of  Triangle XYZ. A circumvolve centered at I intersects the 3 sides of Triangle XYZ at the six points A,B C,D E,and F every bit shown below. We know that YZ=4, ZX=5, and XY=half dozen=AB+CD+EF. Find XA.

Draw  IX, IY, IZ

Draw IM perpendicular to YZ

Depict IN perpendicular to XZ

Draw IO perpendicular to XY

By AAS

Triangle IMZ congruent to  Triangle INZ

Triangle INX concruent to Triangle IOX

Triangle IMY congruent to Triangle IOY

So.....

IM = IN = IO

Merely....chords equidistant from the heart of a circle are themselves equal

So AB = CD = EF

And then

AB + CD + EF = 6      and by exchange, we have that

AB + AB + AB = 6

3AB = 6

AB = ii = CD = EF

So

AB/2 = CD/2 = EF/two

OY   =  MY

AB/two + Past = CD/two + CY

OX   =   NX

AB/two  + AX  = EF/ii + FX

NX =  MX

EF/2 + EZ  = CD/ii + DZ

So......this implies that

CY = Past   = a

AX =  FX = b

EZ = DZ = c

And then......nosotros have this system

a + CD + c = 4 ⇒  a + c = 2   ⇒ a = 2 - c    (1)

a + AB + b =  6 ⇒ a + b = 4      (2)

b + EF + c = five ⇒  c + b  = 3  ⇒ b = three - c     (iii)

Sub   (1) and (3) into (2)

2 - c + 3 - c = four

5 - 2c = 4

-2c = -one

c = ane/two

b = XA = 3 - c   =   3 - one/2   = 5/2

coolcoolcool

 #8
avatar

delight requite me a like. I am poor. lol

edited past GuestNov 26, 2018

21 Online Users

avatar

phillipsthisced.blogspot.com

Source: https://web2.0calc.com/questions/special-parts-of-triangles-please-help-and-answer

0 Response to "if the triangle abc shown, dc=20, ab=21, de=12, and ab is parallel to de. what is the value of ac"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel